

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.

 CI/CD Pipelines for IBM App Connect Enterprise

A Practical Strategy for “Two Speed” DevOps Integrations

John Carr

Integration Services Practice Manager

October, 2024

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
i

Table of Contents

1. OVERVIEW ... 1

2. CASE STUDY: AN ON-PREM ESB AND SDLC PRACTICES .. 1

2.1 RESPONSIBILITIES BY ENVIRONMENT.. 2
2.2 DEVELOPMENT PRACTICES .. 2
2.3 PROMOTE TO QA AND PROD PRACTICES... 3

3. THE PURPOSE OF CI/CD PIPELINES ... 4

3.1 CI/CD PIPELINES IN A NUTSHELL .. 4
3.2 ELEMENTS OF A PIPELINE ... 4
3.3 THE ROLE OF JENKINS .. 4
3.4 THE ROLE OF ARTIFACTORY.. 5
3.5 THE ROLE OF A TEST HARNESS ... 5
3.6 THE ROLE OF CODE QUALITY .. 6

4. PIPELINE EXPLORER ... 6

4.1 THE CHALLENGES WITH JENKINS AS THE MAIN UI .. 6
4.2 PIPELINE EXPLORER ... 6

5. PIPELINE STRATEGY FOR “TWO-SPEED” OPERATIONS .. 7

6. PIPELINE FOR ESB INTEGRATIONS ... 8

6.1 ESB - VERSION 1 .. 8
Activities for DEV ... 9
Activities for QA.. 10
Activities outside of Pipeline for QA .. 12
Activities for PROD inside and outside of the Pipeline .. 12

6.2 ESB - VERSION 2 .. 13
Activities for DEV ... 14
Activities for QA.. 16
Activities outside of Pipeline for QA .. 17
Activities for PROD inside and outside of the Pipeline .. 17

6.3 ESB - VERSION 3 .. 18
Activities outside of Pipeline for QA .. 18
Activities for PROD outside of the Pipeline .. 19

7. PIPELINE FOR NEXTGEN INTEGRATIONS .. 19

7.1 NEXTGEN - VERSION 1... 19
Activities for NONPROD ... 20
Activities for PROD .. 21
Activities outside of Pipeline .. 23

7.2 NEXTGEN - VERSION 2... 23
Activities for NONPROD ... 24
Activities for PROD .. 26
Activities outside of Pipeline .. 26

7.3 NEXTGEN - VERSION 3... 27

8. RECOMMENDATIONS FOR AGILE INTEGRATION AND CONTAINERS .. 27

9. QUICKSTART FOR CONTAINER OPERATIONS ... 28

9.1 BUILDING, RUNNING AND MANAGING CONTAINERS ON RHEL .. 28
9.2 MORE ABOUT PODMAN .. 29

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
ii

9.3 ADMINISTER PODMAN CONTAINERS FROM COCKPIT ... 30
9.4 PODMAN HEALTHCHECK ... 30
9.5 ADMINISTER ACE MESSAGE FLOWS .. 32

10. RESPONSIBILITY ASSIGNMENT MATRIX FOR PIPELINE .. 32

10.1 THE AUTOMATION ARCHITECTURE TEAM .. 33
10.2 THE DEVOPS ENGINEERING TEAM .. 34
10.3 RACI CHART FOR ESB PIPELINE .. 34
10.4 RACI CHART FOR ESB PIPELINE .. 35
10.5 RACI CHART NOTES.. 35

11. ESB UPGRADE STRATEGY ... 36

11.1 TYPES OF MIGRATIONS FOR ACE .. 36
11.2 EXTRACT MIGRATION .. 37
11.3 PRE- AND POST-UPGRADE ACTIVITIES .. 38
11.4 CONSIDERATIONS FOR DEVELOPING IIB FLOWS MOVING FORWARD ... 38

12. INTEGRATION PATTERNS CATALOG .. 39

12.1 CONFLUENCE’S ROLE WITH THE CATALOG .. 39
12.2 EXAMPLE OF USE WITHIN INDUSTRY ... 40

13. CONCLUSION .. 41

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
1

1. Overview

This document represents an abridgement of discussions, customer engagements and independent research

we at TxMQ, Inc. conducted over the past few years helping our clients modernize their IBM Integration Bus

(IIB) hub-and-spoke environments into more container-based NextGen integrations using IBM App Connect

Enterprise (ACE).

Many organizations have existing, traditional ESB and SDLC practices in place serving its customers. Over

time, sustaining this product through incremental, continuous improvements provides limited value.

As an example: the ESB satisfies traditional on-prem hub-and-spoke integrations, but needs for more container-

based deployments are not possible; this hampers new business initiatives.

One of larger challenges integration teams face is the need to maintain their core ESB along with other

established systems as part of scheduled delivery cycles (Classic in nature). At the same time, there is a

growing need for next-gen integrations which has faster, more fluid delivery cycles (DevOps in nature).

That said, reframing the product (ESB and SDLC Practices) provides a way to create value in previously

unrecognized ways to satisfy both needs.

2. Case Study: An On-Prem ESB and SDLC Practices

This section provides a summary and key points of SDLC activities supporting current ESB environments we’ve

encountered from various client engagements. Its purpose is more as a case study and reference when, in

Section 4 (Pipeline Explorer), Section 5 (Pipeline Strategy for “Two Speed” Operations), Section 6 (Pipeline

for ESB Integrations) and Section 7 (Pipeline for Next-Gen Integrations), changes are introduced.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
2

2.1 Responsibilities by Environment

In this case study, a traditional three environment setup (DEV, QA, PROD) is operational on-prem

using IBM MQ LTS 9.x and IBM Integration Bus 10.x on Red Hat Enterprise Linux. High

Availability for MQ/IIB is configured through multi-instance mechanisms.

Developers have dominion over their environment to create MQ queues, new IIB Servers, deploy

flows, etc. The exception is the admin team manages this development environment to apply

Fixpacks or MQ/IIB config changes either through a schedule of maintenance activities.

Admins have dominion over the QA and PROD environments with incoming change requests

through ServiceNOW. Developers are not allowed to make any configuration changes to these

environments.

2.2 Development Practices

Development practices in this case study follow a traditional, structured approach for integration

development with IIB. This approach is not unlike what other IIB developers perform at other

shops. In general, a Developer will logon to a Windows workstation to perform:

- Use a GIT Client App to check out source from a GIT Repository onto their drive

- With IIB Toolkit, import source into a workspace to create/modify flows

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
3

- Build/deploy BAR file to an IIB Runtime

- Perform simple unit testing within the Toolkit

- Debug flows with the IIB Toolkit Debugging Perspective as needed

- Push code back to GIT Repository when ready for QA Staging

2.3 Promote to QA and PROD Practices

Development and admin practices follow a traditional, structured approach for deploying to

QA/PROD. This approach has similarities to other shops with IIB. In general, when a developer is

ready to promote to QA:

- Login to the DEV Server to create an environment specific BAR file with overrides.

- Place associated BAR files and MQSC scripts into the appropriate staging directory

- Send email to supervisor/leads requesting a code review. This code review includes

inspection of unit test reports and other documents on the GIT repository, in addition to

spot checks of the integration code to verify compliance to established best practices

- Checklist is completed by supervisor/leads and developer and pushed to GIT repository

- Developer creates a ServiceNOW request for Admins to deploy changes

- Admins review ServiceNOW request containing deployment steps, create commands to

satisfy each step, SSH into QA/PROD and manually execute from the command prompt.

When complete, the Admin notifies the Developer and closes the ServiceNow request.

- Developer performs post-deploy validation

- Business or other teams perform acceptance testing

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
4

3. The Purpose of CI/CD Pipelines

3.1 CI/CD Pipelines in a Nutshell

A CI/CD pipelines (or “Pipeline” for short) represents a series of steps or jobs to be performed in

order to deliver a new version of software. Pipelines are a practice focused on improving software

delivery using either a DevOps or site reliability engineering (SRE) approach. Although it is

possible to manually execute each of the steps of a CI/CD pipeline, the true value of CI/CD

pipelines is realized through automation.

3.2 Elements of a Pipeline

The steps that form a CI/CD pipeline are distinct subsets of tasks grouped into what is known as a

pipeline stage. Automation here can save both time and effort. Typical pipeline stages include:

- Build: When the application is compiled.

- Test: When code is tested.

- Release: When the application is delivered to the repository.

- Deploy: When the code is deployed to production.

This represents more of the milestones related to pipeline stages and not considered a

comprehensive list. That said, pipelines are unique to the requirements of your organization and

products it serves.

3.3 The Role of Jenkins

It is important to realize Jenkins itself is not a pipeline. Just creating a new Jenkins job does not
construct a pipeline. Jenkins is an engine used to house a choreography of steps to perform a
series of actions/interactions with other tools. It offers a way for other application APIs, software
libraries, build tools, etc. to plug into Jenkins, and it executes and automates the tasks. On its own,

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
5

Jenkins does not perform any functionality but gets more and more powerful as other tools are
plugged into it.
Jenkins itself has a way to execute a job sequentially in a defined way by codifying it and
structuring it inside multiple blocks that can include multiple steps containing tasks. This is called a
Jenkinsfile.

3.4 The Role of Artifactory

Artifactory is a product by JFrog that serves as a binary repository manager. This repository is a

natural extension to the source code repository, in that it will store the outcome of your build

process, often denoted as artifacts. Most of the times one would not use the binary repository

directly but through a package manager that comes with the chosen technology.

In most cases these will store individual application components that can later be assembled into a

full product - thus allowing a build to be broken in smaller chunks, making more efficient use of

resources, reducing build times, etc.

Binary repositories are as vital a part of a well-designed DevOps setup as the source code

repository or continuous integration.

Data retention policies are needed and dependent on its users to determine what needs to be

cleaned up. Artifactory will not delete binaries automatically. In general, there are three kinds of

techniques that are used to manage artifact storage in Artifactory:

- Clearing oversized caches

- Deleting unused artifacts

- Limiting the number of build snapshots that are retained

For clearing oversized caches: Artifactory's remote repositories store downloaded files in a cache.

It’s generally beneficial to retain the entire cache as it speeds up downloads. However, if the

artifacts being used for a given project change, you might find it worthwhile to periodically clear out

the cache.

For deleting unused artifacts: Artifactory will not delete binaries automatically unless you make use

of defining the rules. Of these, one of the most popular is the artifactCleanup plugin, which runs on

a cron job, automatically deleting any artifact that has not been downloaded for "x" number of days.

For limiting the number of build snapshots retained: When this setting is enabled, during any given

build run resulting in uploads reaching the Max Unique Snapshots number you entered, older

releases will automatically be deleted. The highest number will always be your latest release.

3.5 The Role of a Test Harness

A Test Harness are a collection of stubs, drivers and other supporting tools required to automate

test execution. The harness executes tests by using a test library and generates test reports. Test

harness contains all the information needed to compile and run a test like test cases, target

deployment port (TDP), source file under test, stubs, etc.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
6

3.6 The Role of Code Quality

The static code analysis can be used to expose the areas of code that can be improved in terms of

quality, and even higher, we can integrate this static analysis into the development workflow, and

thus, tackle the code quality issues in the early stages of the development even before they reach

the production.

SonarQube may be in use within your organization for code quality of HTML, Java, Python and

TypeScript. The product itself provides code quality with a set of free or 3rd party plugins for the

rules. BetterCodingTools (BCT) is an example of a 3rd party provider specific to inspecting IIB/ACE

flows and ESQL modules. Therefore, investing in a SonarQube plugin for IIB/ACE rules/inspection

is recommended.

Reference: http://bettercodingtools.com/mb-rules/

4. Pipeline Explorer

This section provides justifications for a Pipeline Explorer as a web-based frontend to Jenkins. Further details

for the composition and purpose of Pipeline Explorer are provided, too.

4.1 The Challenges with Jenkins as the Main UI

Jenkins is a powerful and flexible tool to choregraph pipelines, but one of the larger challenges for

a newcomer is to learn how to operate it. For example, organizing Jenkins Jobs and filling out the

web forms can often lead to confusion as to what job to submit.

Though customizations are possible within Jenkins, a better approach would be to abstract the

complexities of Jenkins and other DevOps tools to allow IIB/ACE developers to focus on their

messages flow life cycle. This is where Pipeline Explorer comes in.

4.2 Pipeline Explorer

http://bettercodingtools.com/mb-rules/

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
7

Pipeline Explorer is should be considered a strategic asset and DevOps accelerator for an

organization’s Integration Team. Its purpose is to be a web-based app for orchestrating builds,

tests, and deployment jobs supporting integration needs. This means integration developers could

focus on their development flows rather than the complexity of Jenkins and other DevOps tools.

Pipeline Explorer could be written in a number of languages and platforms, but a recommendation
is to write it as a MEAN (MongoDB, Express JS, Angular JS and Node JS) application. Through
this web application, integration developers would be able to build, deploy and test their IIB/ACE
work and also provide role-based promotion options.

Through Pipeline Explorer, as an accelerator for DevOps, the benefits would be:

- An automated solution for building, testing, promoting and deploying IIB/ACE Integrations

- A config database containing details about what flows are deployed in the topology, with a
reference back to the ServiceNOW requests, Git Repository, Testing results, and
deployed artifacts

- A dashboard providing visibility into the IIB/ACE infrastructure and SDLC metrics

- Ability to identify who authorized each release and when

- Automated Library and Dependency Management to identify fail-fast scenarios

Learn more about the MEAN stack here: https://www.ibm.com/cloud/learn/mean-stack-

explained

5. Pipeline Strategy for “Two-Speed” Operations

One of larger challenges integration teams face is the need to maintain their core ESB interactions with SAP or

other established systems with scheduled delivery cycles (Classic in nature), and at the same time support a

growing need for next-gen integrations which has faster, more fluid delivery cycles (DevOps in nature).

An organization’s ESB may satisfy on-prem hub-and-spoke integrations, but needs for more container-based

deployments are not possible; this hampers new business initiatives. Leveraging containers can drastically

increase the agility of NextGen Pipelines. Containers allow integrations to be deployed reliably and migrate

quickly between various environments by packaging code, configuration settings, and dependencies into a

single object (application image).

A recommendation is to construct and Pipeline supporting both needs in a “Two Speed” strategy.

Two-speed is the concept that strategic planning for an IT department should include a fast track that allows

some projects to be implemented quickly. The strategy proposes that agile, innovative initiatives should be

allowed to move forward quickly without being hampered by the checks and balances that are needed to

maintain business-critical IT operations.

Key points from the 2014 McKinsey article entitled, “A two-speed IT architecture for the digital enterprise”

support this recommendation:

- Delivering an enriched customer experience requires a new digital architecture running

alongside legacy systems

https://www.ibm.com/cloud/learn/mean-stack-explained
https://www.ibm.com/cloud/learn/mean-stack-explained

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
8

- A two-speed IT architecture will help companies develop their customer-facing capabilities

at high speed while decoupling legacy systems for which release cycles of new

functionality stay at a slower pace

- Unlike enterprises that are born digital, traditional companies don’t have the luxury of

starting with a clean slate; they must build an architecture designed for the digital

enterprise on a legacy foundation

Reference: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-two-speed-it-

architecture-for-the-digital-enterprise

Following a “Two-Speed” approach to the Pipeline, Sections 6 (Pipeline for ESB Integrations) and Section 7

(Pipeline for Next-Gen Integrations) provide further descriptions of the strategy to maintain stability to

transactional core systems such as the ESB, while providing adaptability for next-gen initiatives.

6. Pipeline for ESB Integrations

This section is closely related to Section 2 (Current Environment and SDLC Practices) as the Pipeline

introduces new functionality while maintaining the ESB operations in place. As each new version of the Pipeline

is described, additional functionality and automation is included as an accelerator for the current ESB.

Though this Pipeline is for the current ESB supporting IIB v10, its approach is the same when upgrading to ACE

v12 or v13 to continue the hub-and-spoke ESB with minimal changes to the Pipeline; this would be to maintain

stability to transactional core systems such as SAP and not introduce containers.

For clarity, the diagrams represent Pipeline tasks performed at a high level. Refer to Section 3.2 (Elements of a

Pipeline) to learn more about tasks.

6.1 ESB - Version 1

Overall, Pipeline v1 for ESB Integrations is an introductory iteration for the organization. Activities

performed in Section 2.2 (Development Practices) continue to take place outside of the Pipeline.

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-two-speed-it-architecture-for-the-digital-enterprise
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/a-two-speed-it-architecture-for-the-digital-enterprise

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
9

As an introduction version, Pipeline will be used for basic “seeding” of the Pipeline Explorer

Configuration Database as its role is to be the one source to know what integrations/flows are

deployed within the ESB Topology.

This is important so the new Pipeline begins to play a role in promoting to QA and PROD

environments. Each time the Pipeline is used, it contains more information about the ESB in use.

Learn more about Pipeline Explorer in Section 4.

Activities for DEV

Step

Number

Description Notes

1 Create a “Change Package” indicating

source location (GIT Repo), Config File

location on GIT to BAR File

Creation/Overrides for DEV, and Target (IIB

Exec Group

The GIT Repo will include additional

config file details and other artifacts to

support the Pipeline. The intentions

are these config files contain details

(in JSON or YAML) on how to build

and override BAR files.

2 Pipeline Explorer invokes Jenkins via REST

API with information provided in the “Change

Package” and other details contained within

its internal Config Database

The “Change Package” has an ID for

tracking

3 Jenkins, though custom scripting, checks out

the necessary source files from GIT,

performs some dependency checks to

determine build parameters are satisfied

Can be a combination of Jenkins

plugins and custom scripts within the

jenkinsfiles

4 Jenkins performs activities to build the BAR

with appropriate overrides

Build BAR activities can be performed

as an ANT or bash script.

5 Check BAR file(s) for DEV into Artifactory

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
10

6 Deploy to Target IIB Runtime and Execution

Group

This would be the existing DEV IIB

Environment. If the flow(s) already

exists on the Target location, these

deploy actions replace the existing

flow(s) with this newly built BAR file

7 Results are returned to Pipeline Explorer to

update its config database and for the

Developer to determine next steps

A Developer next step outside of the

pipeline would be to manually run the

Unit Test app to ensure the deploy

was successful

Activities for QA

Step

Number

Description Notes

1 Developer Updates the Change Package to

include Config File location on GIT for BAR

File Overrides for QA, and Target (IIB Exec

Group

The GIT Repo will include additional

config file details and other artifacts to

support the Pipeline. The intentions

are these config files contain details

(in JSON or YAML) on how to build

and override BAR files.

2 Pipeline Explorer invokes Jenkins via REST

API with information provided in the “Change

Package” and other details contained within

its internal Config Database

The “Change Package” has an ID for

tracking

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
11

3 Jenkins, though custom scripting, checks out

the necessary source files from GIT,

performs some dependency checks to

determine build parameters are satisfied.

Also, it interacts with Artifactory to grab the

BAR file already stored from the DEV

process to use in Step 4

Can be a combination of Jenkins

plugins and custom scripts within the

jenkinsfiles

4 Jenkins performs activities to build the BAR

with appropriate overrides for QA

Build BAR activities can be performed

as an ANT or bash script.

5 Check BAR file(s) for QA into Artifactory

6 Results are returned to Pipeline Explorer to

update its config database.

If the build is successful, Step 7 is

performed. If the build fails, the

developer resolves issues to re-

submit Change Package

7 If the build is successful from Step 6, then

Package Explorer sends an email notification

to the Release Manager

8 The Release Manager, after performing the

code review and other activities, logs into

Package Explorer to approve/reject the

Change Package

This action notifies the Developer their

Change Package is approved or

rejected

9 When the Change Package is approved, this

action invokes another Jenkins job described

in Step 10

10 Jenkins interacts with Artifactory to get the

QA BAR file and moves it to the QA Staging

Directory

Pipeline Explorer Config Database is

updated. Outside of the Pipeline, the

Developer creates a ServiceNOW

request for the IIB Admin to deploy to

QA

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
12

Activities outside of Pipeline for QA

Outside of the Pipeline, the Developer creates a ServiceNOW request for the IIB Admin to deploy

to QA. Post-deploy validation and UAT activities are unchanged.

Activities for PROD inside and outside of the Pipeline

Activities for PROD would be the same as the Activities for QA subsection, with exception to the

BAR overrides and Staging Directory for PROD. Also, outside of the Pipeline, the Developer

creates a ServiceNOW request for the IIB Admin to deploy to PROD. Post-deploy validation

activities are unchanged.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
13

6.2 ESB - Version 2

Pipeline v2 for ESB Integrations builds upon its predecessor to include a Test Harness, Code

Quality and basic integrations into ServiceNow. Some activities performed in Section 2.2

(Development Practices) are incorporated into the Pipeline, such as a Test Harness for unit testing,

while other activities such as the IIB Admins deploying to QA/PROD continue to take place outside

of the Pipeline.

This iteration of Pipeline will be used more by the developers for their SDLC activities. The

Pipeline Explorer Configuration Database continues to grow as its role is to be the one source to

know what integrations/flows are deployed within the ESB Topology. This is important so the new

Pipeline begins to play a role in promoting to QA and PROD environments. Each time the Pipeline

is used, it contains more information about the ESB in use. Learn more about Pipeline Explorer in

Section 4.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
14

Activities for DEV

Step

Number

Description Notes

1 Create a “Change Package” indicating

source location (GIT Repo), Config File

location on GIT to BAR File

Creation/Overrides for DEV, and Target (IIB

Exec Group

The GIT Repo will include additional

config file details and other artifacts to

support the Pipeline. The intentions

are these config files contain details

(in JSON or YAML) on how to build

and override BAR files.

2 Pipeline Explorer invokes Jenkins via REST

API with information provided in the “Change

Package” and other details contained within

its internal Config Database

The “Change Package” has an ID for

tracking

3 Jenkins, though custom scripting, checks out

the necessary source files from GIT,

performs some dependency checks to

determine build parameters are satisfied

Can be a combination of Jenkins

plugins and custom scripts within the

jenkinsfiles

4 Jenkins performs activities to build the BAR

with appropriate overrides

Build BAR activities can be performed

as an ANT or bash script.

5 Check BAR file(s) for DEV into Artifactory

6 Deploy to Target IIB Runtime and Execution

Group

This would be the existing DEV IIB

Environment. If the flow(s) already

exists on the Target location, these

deploy actions replace the existing

flow(s) with this newly built BAR file

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
15

7 Jenkins invokes the Test Harness as part

of Unit Testing to verify the flow was

successful. The output HTML report

could be either put into GIT by Jenkins, or

stored in the Pipeline Explorer Config

Database

Unit testing with the custom Java

App already in use can be used for

this purpose. The Unit Test app

acts as a test harness for message

injection to the flow(s), and review

the HTML output report of the

results

8 Jenkins invokes a routine to do an

automated code review of the flows and

ESQL.

Examples of products to assist

with the automated IIB/ACE code

review are SonarCube with BCT

Plugin (3rd party product).

An alternative could be simple

inspection of flow names to ensure

they adhere to standards. This

could be written even with bash

scripts as part of a POC.

This would be considered a basic

code review and not a replacement

for the code review process

already in place performed by

peers.

9 Results are returned to Pipeline Explorer to

update its config database and for the

Developer to determine next steps

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
16

Activities for QA

Pipeline v2 activities for QA are essentially the same as in V1. Refer the steps from Section 6.1 to

describe these steps in more detail. The only modifications made at this point would be:

- Additional checks made to ensure the Unit Test and the Code Quality as part of DEV

deploy was complete. This could be stored in the config database as a Boolean

(true/false the unit test was performed, etc.)

- Step 11 (ServiceNOW Request for QA Deploy) – This could be part of an iterative process

to include ServiceNOW into the Pipeline to create a stub of a request that the Developer

or Release Manager can use to make a formal request for Admin services.

Outside of the Pipeline, the Release Manager performs a code review and manually checks the

unit test reports for quality before Approval/Rejection.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
17

Activities outside of Pipeline for QA

Outside of the Pipeline, the Developer updates the ServiceNOW generated request for the IIB

Admin to deploy to QA. Post-deploy validation and UAT activities are unchanged.

Activities for PROD inside and outside of the Pipeline

Activities for PROD would be the same as the Activities for QA subsection, with exception to the

BAR overrides and Staging Directory for PROD. Step 11 (ServiceNOW Request for PROD

Deploy) creates a stub with basic information about the request. Outside of the Pipeline, the

Developer updates this ServiceNOW request for the IIB Admin to deploy to PROD. Post-deploy

validation activities are unchanged.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
18

6.3 ESB - Version 3

Pipeline v3 for ESB Integrations builds upon its predecessor with enhancements to:

- Include more information as part of generating a ServiceNOW Request for QA/PROD

- Include Deploy actions to QA by Operations Manager (IIB Admin)

- The Test Harness to include Unit Test Validations for QA

- Code Quality (TBD depending on tools used, such as SonarCube)

More activities performed in Section 2.2 (Development Practices) are incorporated into the

Pipeline, such as automation for deploying/validation to QA, while other manual activities such as

the IIB Admins deploying to PROD continue to take place outside of the Pipeline.

The Pipeline Explorer Configuration Database continues to grow as its role is to be the one source

to know what integrations/flows are deployed within the ESB Topology. Learn more about Pipeline

Explorer in Section 4.

Activities outside of Pipeline for QA

Outside of the Pipeline, the Developer updates the ServiceNOW generated request for the IIB

Admin to deploy to QA. Through iterative Pipeline versions, more of the manual tasks performed

are automated.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
19

Activities for PROD outside of the Pipeline

Outside of the Pipeline, the Developer updates this ServiceNOW request for the IIB Admin to

deploy to PROD. Post-deploy validation activities are unchanged. Through iterative Pipeline

versions, more of the manual tasks performed in PROD, such as Post Deploy Validation, could be

automated.

7. Pipeline for NextGen Integrations

This section represents the Pipeline for NextGen Integrations that are container-based. As each new version of

the Pipeline is described, additional functionality and automation is included as an accelerator for DevOps

enablement using ACE v12 or v13.

For clarity, the diagrams represent Pipeline tasks performed at a high level. Refer to Section 3.2 (Elements of a

Pipeline) to learn more about tasks.

7.1 NextGen - Version 1

Overall, Pipeline v1 for NextGen Integrations is an introductory iteration for the organization.

Activities such as Unit Testing through a Test Harness or Code Quality/Code Reviews take place

outside of the Pipeline. As an introduction version, Pipeline will be used for basic “seeding” of the

Pipeline Explorer Configuration Database as its role is to be the one source to know what

integrations/flows are deployed.

This is important so the new Pipeline begins to play a role in promoting from NONPROD to PROD

environments. Each time the Pipeline is used, it contains more information about the ESB in use.

Learn more about Pipeline Explorer in Section 4.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
20

Activities for NONPROD

Step

Number

Description Notes

1 Create a “Change Package” indicating

source location (GIT Repo), Config File

location on GIT to BAR File

Creation/Overrides for NONPROD, and

Target Container Platform

The GIT Repo will include additional

config file details and other artifacts to

support the Pipeline. The intentions are

these config files contain details (in

JSON or YAML) on how to build and

override BAR files.

2 Pipeline Explorer invokes Jenkins via REST

API with information provided in the

“Change Package” and other details

contained within its internal Config

Database

The “Change Package” has an ID for

tracking

3 Jenkins, though custom scripting, checks

out the necessary source files from GIT,

performs some dependency checks to

determine build parameters are satisfied

Can be a combination of Jenkins

plugins and custom scripts within the

jenkinsfiles

4 Build the BAR with appropriate overrides Build BAR activities can be performed

as an ANT or bash script.

5 Create Container and associated config

artifacts supporting the new NONPROD

integration

The base container type could be

Podman as it is OCI (Open Container

Initiative) compliant and be deployed to

cloud or on-prem container platforms

such as OpenShift. Other examples of

containers are Docker.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
21

6 Check BAR file(s) and Container Build for

NONPROD into Artifactory

Example of Steps 5 and 6

Source: IBM Redbook: Accelerating

Modernization with Agile Integration

7 Deploy to Target NONPROD Container

Platform

8 Results are returned to Pipeline Explorer to

update its config database and for the

Developer to determine next steps

A Developer next step outside of the

pipeline would be to manually run the

Unit Test app to ensure the deploy was

successful

Activities for PROD

Step

Number

Description Notes

1 Developer Updates the Change Package to

include Config File location on GIT for BAR

The GIT Repo will include additional

config file details and other artifacts to

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
22

File Overrides for PROD and Target

Container Platform

support the Pipeline. The intentions

are these config files contain details

(in JSON or YAML) on how to build

and override BAR files.

2 Pipeline Explorer invokes Jenkins via REST

API with information provided in the “Change

Package” and other details contained within

its internal Config Database

The “Change Package” has an ID for

tracking

3 Jenkins, though custom scripting, checks out

the necessary source files from GIT,

performs some dependency checks to

determine build parameters are satisfied.

Also, it interacts with Artifactory to grab the

BAR file already stored from the NONPROD

process to use in Step 4

Can be a combination of Jenkins

plugins and custom scripts within the

jenkinsfiles

4 Jenkins performs activities to build the BAR

with appropriate overrides for PROD

Build BAR activities can be performed

as an ANT or bash script.

5 Create Container and associated config

artifacts supporting the new PROD

integration

The base container type could be

Podman as it is OCI (Open Container

Initiative) compliant and be deployed

to cloud or on-prem container

platforms such as OpenShift.

6 Check BAR file(s) for QA into Artifactory

7 Results are returned to Pipeline Explorer to

update its config database.

If the build is successful, Step 8 is

performed. If the build fails, the

developer resolves issues to re-

submit Change Package

8 If the build is successful from Step 7, then

Package Explorer sends an email notification

to the Release Manager

9 The Release Manager, after performing the

code review and other activities, logs into

Package Explorer to approve/reject the

Change Package

This action notifies the Developer their

Change Package is approved or

rejected

10 When the Change Package is approved, this

action invokes another Jenkins job described

in Step 11

11 Jenkins interacts with Artifactory to get the

Container file and deploys to the PROD

Container Platform

Pipeline Explorer Config Database is

updated. Outside of the Pipeline, the

Developer perform post-deploy

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
23

validation

Activities outside of Pipeline

The Developer may have a need to create a ServiceNOW request for related tasks depending on

needs. Post-deploy validation, UAT and establishing monitoring activities are performed outside

the Pipeline.

7.2 NextGen - Version 2

Pipeline v2 for NextGen Integrations builds upon its predecessor to include a Test Harness and

Code Quality. The Pipeline Explorer Configuration Database continues to grow as its role is to be

the one source to know what NextGen integrations/flows are deployed. This is important so the

new Pipeline begins to play a role in promoting to NONPROD and PROD environments. Each time

the Pipeline is used, it contains more information about the NextGen in use.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
24

Activities for NONPROD

Step

Number

Description Notes

1 Create a “Change Package” indicating

source location (GIT Repo), Config File

location on GIT to BAR File

Creation/Overrides for NONPROD, and

Target Container Platform

The GIT Repo will include additional

config file details and other artifacts to

support the Pipeline. The intentions

are these config files contain details

(in JSON or YAML) on how to build

and override BAR files.

2 Pipeline Explorer invokes Jenkins via REST

API with information provided in the “Change

Package” and other details contained within

its internal Config Database

The “Change Package” has an ID for

tracking

3 Jenkins, though custom scripting, checks out

the necessary source files from GIT,

performs some dependency checks to

determine build parameters are satisfied

Can be a combination of Jenkins

plugins and custom scripts within the

jenkinsfiles

4 Build the BAR with appropriate overrides Build BAR activities can be performed

as an ANT or bash script.

5 Create Container and associated config

artifacts supporting the new NONPROD

The base container type could be

Podman as it is OCI (Open Container

Initiative) compliant and be deployed

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
25

integration to cloud or on-prem container

platforms such as OpenShift

6 Check BAR file(s) and Container Build for

NONPROD into Artifactory

7 Deploy to Target NONPROD Container

Platform

8 Jenkins invokes the Test Harness as part

of Unit Testing to verify the flow was

successful. The output HTML report

could be either put into GIT by Jenkins, or

stored in the Pipeline Explorer Config

Database

Unit testing with the custom Java

App already in use can be used for

this purpose. The Unit Test app

acts as a test harness for message

injection to the flow(s), and review

the HTML output report of the

results

9 Jenkins invokes a routine to do an

automated code review of the flows and

ESQL.

Examples of products to assist

with the automated ACE code

review are SonarCube with BCT

Plugin (3rd party product).

An alternative could be simple

inspection of flow names to ensure

they adhere to standards. This

could be written even with bash

scripts as part of a POC.

This would be considered a basic

code review and not a replacement

for the code review process

already in place performed by

peers.

10 Results are returned to Pipeline Explorer to

update its config database and for the

Developer to determine next steps

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
26

Activities for PROD

Pipeline v2 activities for PROD are essentially the same as in v1. Refer the steps from Section 7.1

to describe these steps in more detail. The only modifications made at this point would be:

- Additional checks made to ensure the Unit Test and the Code Quality as part of

NONPROD deploy was complete. This could be stored in the config database as a

Boolean (true/false the unit test was performed, etc.)

- Step 12 (Test Harness to validate PROD) – This could be an optional part of an iterative

post-install process to do basic validations of the deployment.

Activities outside of Pipeline

The Release Manager performs a code review and manually checks the unit test reports for quality

before Approval/Rejection. When the deploy to PROD is complete, UAT and establishing

monitoring activities are also performed outside the Pipeline.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
27

7.3 NextGen - Version 3

Pipeline v3 for NextGen Integrations builds upon its predecessor with enhancements to:

- The Test Harness to include more functionality for Unit Tests

- Code Quality (TBD depending on tools used)

- Establish monitoring rules on the deployed container

The Pipeline Explorer Configuration Database continues to grow as its role is to be the one source

to know what NextGen integrations/flows are deployed.

Through iterative Pipeline versions, more of the manual tasks performed could be automated.

8. Recommendations for Agile Integration and Containers

Implementing an Enterprise-Oriented container management system such as OpenShift with IBM Cloud Pak for

Integration (CP4i) may be a logical choice for your organization. A few reasons for suggesting this:

- They’re IBM products and could be implemented in multi-cloud environments supporting

OpenShift (I.E. AWS, Azure, GCP)

- Since CP4i are containers built by IBM, they’ll provide defect support (NOTE: you can

build your own containers – and many organizations do build on their own. IBM will

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
28

support the products you put on them (MQ, ACE) but they will not support the container

itself if there are defects such as security issues.)

- CP4i provides IBM written operators for OpenShift to be used to deploy CP4i capabilities

and runtimes. Operators extend a Kubernetes cluster by adding and managing additional

resources in the Kubernetes API. Learn more here: https://www.ibm.com/docs/en/cloud-

paks/cp-integration/2021.2?topic=installing-operators

As a long-term strategy, the use of OpenShift and CP4i should work well for managing containers at a large

scale, but the Pipeline detailed within Sections 3 (CI/CD Pipelines), 4 (Pipeline Explorer) and 7 (Pipeline for

NextGen Integration) would still need to be constructed. In short, what CP4i provides is more of the deploy

and operational nature of containers and not what the above sections provide.

From a practical point of view, the “runway” and skills needed to stand up such container management systems

may not be feasible in the short term. This alone can hamper business initiatives that NextGen Integrations can

provide.

In order to move forward with NextGen Integrations, and to create value from early iterations of the Pipeline, it’s

recommended to use an open source, IBM and RedHat endorsed container called Podman. The experience

gained with this approach can be leveraged with OpenShift, Kubernetes or even other OCI compliant cloud

deployment options.

The Open Container Initiative (OCI) is a lightweight, open governance structure (project), formed under the

Linux Foundation, for the express purpose of creating open industry standards around container formats and

runtime. The OCI was launched on 2015 by Docker, CoreOS and other leaders in the container industry.

References:

https://www.ibm.com/cloud/integration/agile-integration/

https://community.ibm.com/community/user/integration/blogs/kim-clark1/2021/11/23/iib-ace-series

https://opencontainers.org/

9. QuickStart for Container Operations

Linux containers have emerged as a key open-source application packaging and delivery technology,

combining lightweight application isolation with the flexibility of image-based deployment methods.

9.1 Building, Running and Managing Containers on RHEL

Red Hat provides a set of command-line tools that can operate without an enterprise container

engine. These include:

- podman: for directly managing pods and container images (run, stop, start, ps, attach,

exec, etc.)

- buildah: for building, pushing, and signing container images

https://www.ibm.com/docs/en/cloud-paks/cp-integration/2021.2?topic=installing-operators
https://www.ibm.com/docs/en/cloud-paks/cp-integration/2021.2?topic=installing-operators
https://www.ibm.com/cloud/integration/agile-integration/
https://community.ibm.com/community/user/integration/blogs/kim-clark1/2021/11/23/iib-ace-series
https://opencontainers.org/

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
29

- skopeo: for copying, inspecting, deleting, and signing images

- runc: for providing container run and build features to podman and buildah

- crun: an optional runtime that can be configured and gives greater flexibility, control, and

security for rootless containers

Because these tools are compatible with the Open Container Initiative (OCI), they can be used to

manage the same Linux containers that are produced and managed by Docker and other OCI-

compatible container engines such as OpenShift. However, they are especially suited to run

directly on Red Hat Enterprise Linux, in single-node use cases.

The main advantages of these tools include:

- Running in rootless mode: rootless containers are much more secure, as they run without

any added privileges

- No daemon required: these tools have much lower resource requirements at idle, because

if you are not running containers, Podman is not running. Docker, on the other hand, have

a daemon always running

- Native systemd integration: Podman allows you to create systemd unit files and run

containers as system services

The concepts for container management listed above can be incorporated into the Pipeline for

NextGen to gain experience in NONPROD and PROD for on-prem.

9.2 More about Podman

Podman was released with Red Hat Enterprise Linux 7.6 and 8.0 as the next generation of Linux

container tools, is designed to allow faster experimentation and development of features.

OpenShift shares many of its underlying components with Podman. This allows developers to

leverage knowledge gained in experiments conducted in Podman for new capabilities in OpenShift.

Podman provides a Docker-compatible command line and provides a socket activated REST API

service to allow remote applications to launch on-demand containers. This REST API also

supports the Docker API, allowing users of docker-py and docker-compose to interact with the

Podman as a service.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
30

9.3 Administer Podman Containers from Cockpit

Podman containers can be managed from the command line or through a web-based app called

Cockpit.

Cockpit is a server administration tool sponsored by Red Hat, focused on providing a modern-

looking and user-friendly interface to manage and administer servers. It is a web-based graphical

interface for servers that can be used by admins to administer Podman containers.

9.4 Podman Healthcheck

A “healthcheck” is a way in which a user can determine the status of the primary process running

inside of a container, such as ACE. It is more than a simple “is my container running?” question as

it's more like “is my application ready?” So, a healthcheck is really a way to verify that both the

container and its applications are responsive.

Podman’s implementation of healthchecks can be categorized in three pieces:

 1. Image and container metadata

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
31

 2. Logging

 3. Scheduling

The OCI Image Specification does not include a healthcheck definition. The fact that an OCI image

cannot embed or retain the healthcheck metadata actually has resulted in a very flexible approach

to defining them, unlike with Docker where the metadata is embedded in a container.

A log file for healthchecks is also created. It retains the container’s health status as well as history

including previous healthcheck attempts. And finally, the scheduling is done by systemd. When a

container starts and has a healthcheck, Podman performs a transient setup of a service and timer

file.

You can use Podman to interact with healthcheck results and status. The most direct way is using

podman inspect on the container. The example above is to test nginx in a container, but this could

be modified and used to test ACE apps, too. Since these are commands, they can be put into a

custom app to collect or even an AppDynamics plugin to part of an organization’s enterprise

monitoring strategy.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
32

9.5 Administer ACE Message Flows

Each ACE instance within a container provides access to the Admin Web UI, if enabled. This

allows developers and admins to view details of deployed flows for each container.

Another option would be to connect to an individual container’s command prompt. This way, you

can inspect the filesystem including the ACE logs.

Reference:

https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_starting-with-

containers_building-running-and-managing-containers

10. Responsibility Assignment Matrix for Pipeline

DevOps (which includes CICD initiatives) has its best success when it’s a coordinated, multi-team effort. At its

heart DevOps is about empowerment of developers and operations to work together, accelerating

construction/testing/delivery of new business initiatives.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_starting-with-containers_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_starting-with-containers_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_starting-with-containers_building-running-and-managing-containers

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
33

This should be considered a strategic endeavor requiring formation of new teams: The Automation

Architecture Team and DevOps Engineering Team. Some organizations where such teams operate are

collectively called a “Machine Shop” as that’s what they do: a workshop for making or repairing mechanical

items.

10.1 The Automation Architecture Team

The Automation Architecture Team charter is to design and develop strategies that will allow an

organization to automate its processes. They work with company leadership, departmental

stakeholders, and IT departments to see the holes in an automation process before it starts.

Automation architects are problem solvers and creative thinkers who understand both the business

and technology sides of an organization’s work environment. Basic recommendations for this

team:

- Team size should be 3 members reporting to some director-level resource overseeing

digital transformation. The director should already be someone with that role within your

organization to give credibility and guidance to this team

- 2 to 1 ratio for internal vs external hires (this provides a composite of team members who

have experience internally with the company’s business and technology side, and new

team members (external hires) who bring their perspective and experience to automation)

- At least one of the team members should have a proven track record for automation and

recognized as a contributor in the space through published articles, webinars, open-

source contributions and work experience. Most likely, this will be your new hire and will

be the Distinguished Engineer for Automation and leading/contributing to the DevOps

Engineering team

- The team itself is an accelerator for a unified DevOps strategy for the organization. Its

formation and charter may only need to exist for two to three years to design and develop

strategies that will allow an organization to automate its processes. Team members can

eventually move to the DevOps Engineering or application teams, depending on needs

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
34

10.2 The DevOps Engineering Team

The DevOps Engineering Team charter is to be 1) the product owners and implementers of the

tools and processes chosen by the Automation Architecture team and 2) advisors/consultants to

application teams requiring their skills to collaborate on building out key pieces of a Pipeline.

This team’s efforts reduce DevOps complexity, closing the gap between actions needed to quickly

change an application, and the tasks that maintain its reliability. Basic recommendations for this

team:

- Keep team size around 3 (minimum) and 6 members (max), reporting to the Distinguished

Engineer of Automation in the Automation Architecture Group

- 2 to 1 ratio for external vs internal hires (this provides a composite of team members who

have experience internally and new team members (external hires) who bring their

perspective and experience to automation)

- At least half of the team members should have a relevant work experience for automation

- Team members must have skills that span both development and operations, including

interpersonal skills to help bridge divides between siloed application teams

- This team should be considered permanent compared to the Automation Architecture

Team, as this team will be the product owners of the Pipeline for future enhancements and

rollout to additional application teams

10.3 RACI Chart for ESB Pipeline

ESB
Pipeline

Developer
Team

Admin
Team

DevOps
Engineering

Team

Automation
Architecture

Team

Reference
Sections

Pipeline Explorer C I A R
4.2
6

GIT Repository
Changes* A I C R

n/a

Jenkins C I A R

3.3
5
6

Build BAR RA I C I
5
6

Artifactory C I A R

3.4
5
6

IIB Runtime
Deploy RA C C I

5
6

Test Harness RA I C C

3.5
6.2
6.3

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
35

Code Quality C I A R

3.6
6.2
6.3

ServiceNow C C A R
6.2
6.3

Monitoring C A C R n/a

10.4 RACI Chart for ESB Pipeline

NextGen
Pipeline

Developer
Team

Admin
Team

DevOps
Engineering

Team

Automation
Architecture

Team

Reference
Sections

Pipeline Explorer C I A R
4.2
7

GIT Repository
Changes* A I C R

n/a

Jenkins C I A R

3.3
5
7

Build BAR/zip
distro RA I C I

5
7

Create Container A C C R

5
7
9

Artifactory C I A R

3.4
5
7

Deploy to
Container Platform C A C R

5
7
9

Test Harness RA I C C

3.5
7.2
7.3

Code Quality C I A R

3.6
7.2
7.3

ServiceNow C C A R n/a

Monitoring C A C R 7.3

10.5 RACI Chart Notes

R = Responsible, A = Accountable, C=Consulted, I=Informed

* - may or may not be any related changes n/a – no reference in doc

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
36

RED Text – Represents tasks that are unique may not be cross-functional between respective Pipelines

Responsible:

Doing the Task

This team actions the task or deliverable. They are responsible for making

the decisions.

Accountable:

Owning the Task

This team or role is responsible for the overall completion of the task or

deliverable.

Consulted:

Assisting

This team provides information useful to complete the task or deliverable.

There will be two-way communication between those responsible and

those consulted. This team are often the subject matter expert.

Informed: Keeping

Aware

This team will be kept up to date on the task or deliverable. This could be

on progress, or when the task or deliverable is completed. They may not

be asked to give feedback or review, but they can be affected by the

outcome of the task or deliverable.

11. ESB Upgrade Strategy

ACE v12 and above combines the existing IIB concepts for integrations along with new cloud-based

composition capabilities. However, a more fundamental change is the continued focus on enabling container-

based deployment of the on-premises software runtime. ACE does not mandate a move to containers, so one

can deploy workloads in the more centralized ESB pattern, if desired.

Many organizations have a large investment in place with the current ESB. It is possible with the time and

resources to completely re-architect the ESB to NextGen with the use of containers. From a practical

standpoint, it’s advised to make incremental changes to this topology over time as the ESB serves its purpose

with core systems. That said, there are opportunities for basic changes prior to migration.

As a note: There is no change to the Eclipse project types between IIB and ACE. Application, Library and

Shared Library are the same.

11.1 Types of Migrations for ACE

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
37

ACE v12 and above itself offers three paths for IIB upgrades: Parallel Migration, In-Place Migration

and Extract Migration. Parallel and In-Place have been part of upgrade strategies for years.

Extract migration is new with ACE and the recommended option.

11.2 Extract Migration

The Extract Migration process comes with a new command called mqsiextractcomponents, where

extraction of configuration and resources come from an IIB backup file the admin creates. This

produces an integration server work directory containing yaml and other files to be used by ACE.

The process is repeatable, cross-platform, and can be used to migrate to different topologies or

even cloning integration nodes. This is a major step forward for DevOps enablement.

For Extract Migration, two options are available:

- Parallel Migration

o Install ACE environment

o Use mqsiextractcomponents to configure ACE (this will help to create policies for

you from config services for example) to help ensure you don’t forget

configurations from IIB

o Discard the run directory contents

o Extract a whole node to get the configuration, move out all of the directories

(integration servers) in the server’s directory, then move each server back in one

by one to migrate a server at a time

o To pick-up any changes since the original backup, just redo the backup and run

extract again targeting a temporary node, then just copy the newly extracted files

or settings into your original node/server

- In place

o Install ACE environment

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
38

o Use mqsiextractcomponents to configure ACE (this will help to create policies for

you from config services for example) to help ensure you don’t forget

configuration from IIB

o Don’t discard the run directory contents when complete as you’ll still need them

NOTE: mqsiextractcomponents is not a complete like for like replacement of

mqsimigratecomponents in-place approach, but the same result can be achieved

As a recommendation, using Extract Migration with the side-by-side is preferred.

11.3 Pre- and Post-Upgrade Activities

The following represents a summary of activities to consider:

 - Survey of ESB PROD flows to determine

 1) Flows that can be retired

 2) Flows that can be re-located to other ESB EGs

 3) Flows to be either consolidated or divided up more for functionality

 4) Flows that are candidates to move to NextGen

 - Perform those changes (for 1, 2 and 3) in IIB before upgrading

 - Create a Test Harness/Unit Test Java App to be functional with ACE

 - Perform a side-by-side extract migration from IIB to ACE for ESB Integrations

 - Migrate #3 flows to NextGen architecture

11.4 Considerations for Developing IIB Flows Moving Forward

This subsection provides general guidance and recommendation in regards to any net-new IIB

integrations created, in an effort to ensure a smoother transition to ACE when that time comes.

ACE does not mandate a move to containers, so you can continue deploying workloads in the

more centralized ESB, hub-and-spoke pattern supporting core systems as they are today. That

said, here are some “work smart” suggestions for any net-new IIB integrations and flows:

- Ensure nodes such as SCA (SCAInput, SCAOutput, etc.), Decision Services, and PHP

are no longer used. These nodes have been removed in ACE v11 and above

- Consider use of MQ Client connections instead of Local Queue Manager connections with

MQ nodes (MQInput, MQOutput, etc.) This is to prepare developers to think in terms of

the message broker (ACE) is no longer on the same server as MQ. Thinking/developing

this way also works for NextGen integrations with containers

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
39

- Create flows and associated objects as part of being either an Application or Library,

instead of Independent Resources. Thinking/developing this way also works for NextGen

integrations with containers

- When designing new flows, identify the ones that can be created that are more

isolated/independent of other core flows, and separate into their own execution group;

these are your candidates for NextGen integrations

12. Integration Patterns Catalog

A key architecture objective for the integration catalog is to ensure successful development and delivery of new

high performing integrations based on successful integration patterns already in use at your shop, or leveraging

integration patterns used throughout industry.

12.1 Confluence’s Role with the Catalog

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
40

Confluence is a collaborative tool for teams and can be used as the starting point for the Integration

Patterns Catalog. Examples of use would be to provide:

- Integration guidance for new integrations on how to make a decision on the type of pattern

to employ

- Integration enablement on the “how to” for a pattern with a given technology (ACE, APIc,

MQ, etc.)

- Governance and procedures to explain the SDLC

12.2 Example of use within Industry

A large financial services company uses the Integration Patterns Catalog concept as part of their

API enablement strategy on IBM i and z/OS platforms. Additions were made beyond the catalog

content to include (for each category of technology):

- Getting started for Developers

- Functionality and Operability

- Naming Standards and Coding Conventions

An Integration Patterns Catalog in use can help accelerate new development for ESB and

NextGen Integrations and be part of other strategic initiatives within the organization.

PREPARED BY TXMQ, INC. SOME MARKS PROPERTY OF IBM CORPORATION OR OTHERS.
41

13. Conclusion

We at TxMQ, Inc. appreciate your interest in learning more about modern, practical CICD Pipelines with IBM

App Connect Enterprise and IBM MQ.

Want to learn more? Reach out to us at TxMQ, Inc. Our deep industry expertise allows us to utilize subject
matter experts to solve your most complex challenges. TxMQ, Inc. has solutions and innovations helping you
do business in an ever-changing world. We're here to guide your organization through the digital transformation
journey.

We look forward to partnering with you in future endeavors to help get the most out of IBM MQ, App Connect
Enterprise, a CICD Pipeline and everything in-between.

TxMQ, Inc.

Imagine. Transform. Engage.

We're here to help you work smart in the new economy!

https://www.txmq.com/

